Общая эффективность твердооксидных топливных элементов определяется в основном кинетикой окислительно-восстановительной реакции (ОВР), происходящей на катоде. Скорость реакции на катоде ниже, чем на аноде, что ограничивает общую скорость реакции. В поисках решения этой проблемы ученые разрабатывают новые материалы для катодов с высокой активностью реакции восстановления кислорода, однако, обычно им не хватает химической стабильности, рассказывает Phys.org.
Команда химиков из Корейского института передовых технологий и Пусанского университета занялась изучением свойств композитного электродного материала LSM-YSZ, который широко используется в промышленности ввиду превосходной стабильности. В результате они разработали процесс нанесения на поверхность электрода нанослоя оксида празеодимия. Этот катализатор активно способствует ОВР. Нанесение слоя значительно повышает производительность тверооксидных топливных элементов.
Испытания показали, что твердооксидные топливные элементы с электродами, покрытыми новым материалом, проявляют при температуре 650 градусов Цельсия рекордную для LSM-YSZ плотность энерговыделения — в три раза выше, чем электроды без оболочки.
Новый метод работает при комнатной температуре и атмосферном давлении, не требует сложного оборудования или химических процессов. При погружении композитного электрода в раствор с ионами празеодимия и при воздействии электрического тока возникают ионы гидрата окиси. Они реагируют с ионам празеодимия, формируя осадок, покрывающий электрод. После высыхания оболочка превращается в оскид, который остается стабильным и стимулирует ОВР в условиях высоких температур. Весь процесс занимает всего 4 минуты.
Простая технология, не требующая значительного расхода электроэнергии, может существенно повысить эффективность некоторых ключевых химических реакций — в некоторых случаях, в 100 000 раз. В начале года о ней рассказали ученые из США. Речь идет о реакциях, лежащих в основе переработки нефти, производства фармакологических препаратов и многих других важных промышленных процессов.