Для чего нужен ИИ
Аналитики McKinsey изучили 160 случаев использования глубокого обучения с пользой для общества. В базу данных они включили сценарии применения ИИ в различных областях — от борьбы с насилием до искоренения голода.
Наибольшей популярностью технология пользуется в сфере здравоохранения. На втором месте экология, а на третьем — устранение последствий ЧП. Реже всего ИИ используют для проверки данных — аналитики нашли всего четыре подобных примера.
Эксперты признают, что пока алгоритмы не получили широкого распространения. Чаще всего их тестируют в экспериментальном режиме, а пилотные проекты не отличаются крупным масштабом.
Несмотря на это, авторы отчета видят потенциал в технологии. По их мнению, искусственный интеллект может помочь ООН в выполнении стратегии устойчивого развития на ближайшие годы. В нее входит 24 пункта — от гендерного равенства до развития чистой энергетики. Для каждой из целей, утверждают в McKinsey, уже есть готовые ИИ-решения.
Авторы отчета также определили, какие именно системы искусственного интеллекта помогут сделать мир лучше. Большинство из них попадает в одну из четырех категорий: компьютерное зрение, обработка естественного языка, распознавание речи и аудиозаписей. Отдельно эксперты выделили обучение с подкреплением, генерирование контента и глубокое обучение со структурными моделями.
Последняя методика поможет выявлять закономерности в больших массивах данных. Например, вычислять налоговых мошенников или систематизировать сведения о пациентах.
Без контроля со стороны человека ИИ бесполезен
Однако алгоритмы смогут спасти мир, только если разработчики избавят их от несовершенств. В McKinsey отмечают, что ИИ склонен делать предвзятые выводы и выносить несправедливые решения. Другая проблема систем на базе машинного обучения — это непрозрачность. Даже сами разработчики не всегда могут понять, почему машина делает тот или иной вывод на основе определенного набора данных.
Проблемы приватности и безопасности также мешают внедрять ИИ в социально значимые отрасли.
Впрочем, развитию ИИ в соцсекторе препятствуют и технические проблемы. Часто при создании алгоритмов специалистам не хватает нужной информации и у них нет доступа к необходимым базам данных. В некоторых случаях применить алгоритм для борьбы с климатическими изменениями или болезнями не удается из-за ограничений регуляторов.
Но есть и еще один негативный фактор — это нехватка специалистов. В половине из описанных аналитиками случаев при разработке решения нужны ведущие исследователи с ученой степенью в сфере машинного обучения. «Однако такие люди в дефиците», — пишут авторы.
На этапе разработки внедрение не останавливается. Часто компаниям или благотворительным организациям требуется «переводчик», который поможет настроить инструмент и корректно интерпретировать полученные с его помощью данные.
В целом эксперты полагают, что человек должен сопровождать ИИ на всех этапах работы и контролировать все процессы от начала и до конца.
Ранее аналитики британского фонда инноваций Nesta пришли к аналогичным выводам в отношении беспилотников. Они считают, что задача дронов — это не зарабатывание денег, а работа на благо общества. На первом месте должны стоять разработки, несущие пользу обществу. Например, дроны-спасатели и беспилотные скорые помощи. Курьерская доставка с помощью квадрокоптеров и другие коммерческие сценарии применения играют менее важную роль.