Электроны могут быть пойманы, или локализованы в неупорядоченных материалах со случайным образом распределенными аномалиями. Это явление получило название андерсоновской локализации в честь американского физика-теоретика Филипа Андерсона и стало важной вехой в развитии физики конденсированного состояния, рассказывает Science Alert.
Если в классической физике мы можем представить себе частицу света как шарик, отскакивающий от стенок хаотичного лабиринта, то волновое представление квантовой механики заставляет электрон останавливаться и превращает материал в изолятор. Нечто похожее происходит, когда электромагнитные волны вынуждают свет рассеиваться в каком-нибудь веществе, по крайней мере, в одном или двух измерениях. Однако до сих пор никто не мог понять, будет ли происходить то же самое в трех измерениях.
Раскрыть этот секрет помог прогресс в вычислительных программах и численном моделировании. При помощи нового инструмента FDTD Software Tidy3D, команда ученых смогла провести каждый цикл вычислений, которые обычно заняли бы несколько дней, за 30 минут. Программа на основе конечно-разностного временного алгоритма, которая делит пространства на ячейки и решает уравнения в каждой точке координат, позволила протестировать различные конфигурации системы, размеры и структурные параметры.
Результаты числового моделирования оказались лишены проблемных мест, которые затрудняли предыдущие исследования. Ученые обнаружили, что свет нельзя локализовать в 3D в диэлектрических материалах, таких как стекло или кремний. Однако четкие числовые данные указывают на то, что андерсонова локализация возможна в случайных наборах проводящих металлических сфер.
Этот результат указал физикам направление дальнейших исследований андерсоновой локализации в различных типах материалов.
Парадоксальное свойство физики фотонов обнаружили бельгийские ученые. В статье, опубликованной в журнале Nature, они рассказали об эксперименте, который противоречит устоявшемуся представлению о феномене группировки фотонов.