Hitech logo

Идеи

Открыт метод ускорения вихрей в сверхпроводниках до 15 км/с

TODO:
Георгий Голованов6 июля 2020 г., 14:53

Международная команда ученых обнаружила новую сверхпроводящую систему, в которой магнитные кванты потока могут двигаться со скоростью от 10 до 15 км/с. Разработанный физиками сверхпроводник из ниобия стал хорошим кандидатом для однофотонных детекторов, которые можно использовать в оптике и квантовой криптографии.

Самые интересные технологические и научные новости выходят в нашем телеграм-канале Хайтек+. Подпишитесь, чтобы быть в курсе.

Сверхпроводимость — физический феномен, свойственный многим материалам при низкой температуре и проявляющийся в исчезновении электрического сопротивления и полном вытеснении магнитного поля из объема сверхпроводника. Их уже применяют в медицинской диагностике, в маглев-поездах, турбогенераторах.

Однако проводимость большинства важных для технологии сверхпроводников на самом деле не «сверх». В так называемых сверхпроводниках II типа внешнее магнитное поле проходит сквозь материал в форме квантовых линий магнитного потока. Эти линии потока известны как вихри Абрикосова. Они возникают уже в средне-сильных электрических токах, и сверхпроводники снова начинают проявлять сопротивление, пишет Phys.org.

У большинства сверхпроводников состояние низкого сопротивления ограничено скоростью вихрей порядка 1 км/с. Этого недостаточно для достижения физики неравновесных систем. Однако ученые из Австрии, Германии и Украины обнаружили новую сверхпроводящую систему, в которой магнитный поток может достигать скорости 10 — 15 км/с.

Новый сверхпроводник проявляет редкую комбинацию свойств — высокое структурное единообразие, большой критический ток и быструю релаксацию нагретых электронов. Из-за этого феномен нестабильности вихревых потоков — резкий переход сверхпроводника от состояния низкого сопротивления к обычному — происходит при достаточно больших токах переноса.

Физики изготовили сверхпроводник из карбида ниобия и испытали скорость движения вихрей в интересующих их условиях. Результат показал, что этот материал — хороший кандидат для производства быстрых однофотонных детекторов, которые можно использовать в конфокальной микроскопии, квантовой криптографии и оптической коммуникации в глубоком космосе.

В прошлом году ученые США запатентовали сверхпроводник, который работает при комнатной температуре, без охлаждения или высокого давления. Появление доступных высокотемпературных сверхпроводников может преобразить всю нашу жизнь, от энергетики до транспорта.